
Airpush’s AirSDK 1.0 Universal is the first SDK to be designed specifically for use in marketplaces

other than Google Play. It includes in-app as well as out-of-app monetization solutions such as
Push Ads and Icon Ads. This SDK is perfect for driving the highest revenue streams possible from

third party stores such as the following: AndAppOnline, AndroidPit App Center, Appland, Appslib,
Soc.io Mall, Getjar, SnappCloud, F-Droid, Mobango, Mobile9, Moborobo, NexVa, Opera Mobile

Store, AppTown, Pdassi, Apptoide, SlideME, Anzhi, Appchina, D.cn Games Center, gFan, HiAPK, N-
Duo Market, PandaApp, Taobao App Market, Tencent App Gem, Yandex, and others.

Package Name

Your package Name : com.airdsp.buzztouch

Ad Units

 Push Notification Ads

 Icon Ads

 In-App Banner Ads

 Rich Media Banner Ads

 SmartWall showing AppWall, Advanced Overlay, and Video ad formats

There are 5 types of ad units available in this SDK. To enable and optimize each of these ad units,

select the corresponding check box next to each ad unit in 'Step 2' of adding your app. Free
weekly payments are available for each.

Push Notification Ads
Push Ads are displayed in the notification trays of opted-in Android devices, which generates sky-
high earnings and allows developers to monetize 100% of installs. With the highest overall ARPU

of any mobile ad format, these ads have redefined revenue potentials for developers around the
world.

Icon Ads
Icon Ads are sponsored shortcuts (“Icons”) placed on the homescreen of an Android device.

Developers are paid for each Icon Ad placed on a device, and the format can be combined with
other ad types to optimize revenue.

In-App Banner Ads
In-App Banner Ads are a staple of the mobile advertising world. Combined with the rest of
Airpush’s industry leading ad types, In-App Banner Ads enable Android developers to monetize

their users at every point in their mobile experience and maximize their revenue.

Rich Media Banner Ads
Rich Media Ads enable advertisers to deliver interactive content that drives dramatically more

engagement than traditional static ads. This results in superior user experiences and most
importantly, industry leading eCPMs for developers.

SmartWall
SmartWall is a revolutionary new interstitial format that dramatically outperforms all other others
on the market. SmartWall’s patent-pending technology automatically mediates between Rich

Media, Dialog, Video, AppWall, Advanced Overlays and more based on yield and network
connection type!

Installation Instructions

The Airpush Android SDK contains the code necessary to install Airpush ads in your application.

This wiki will guide you through a simple XML implementation.

Airpush SDK Requirements:

1.JDK 1.6 or later
2.Android 2.1 or later

Step 1 - Adding the JAR
For Eclipse Projects:

If you're using ADT Plugin 18 or later, copy the com-airdsp-buzztouch.jar to the "libs" folder of

your project and move on to step 2.

To verify whether it's added to your project, expand "Android Dependencies:"

http://manage.airpush.com/docs/index.php?title=File:Jar1.png

Use the option below if your ADT version is lower than 18.

Copy the com-airdsp-buzztouch.jar to your project's root directory.

1.Right-click on your project from the Package Explorer tab and select "Properties"

2.Select "Java Build Path" from the left panel
3.Select the "Libraries" tab from the main window

4.Click on "Add JARs..."
5.Select the JAR that's been copied to the project's root directory

6.Click "OK" to add the SDK to your Android project
7.Select the "Order and Export" tab from the main window and check the SDK.

http://manage.airpush.com/docs/index.php?title=File:Jar2.png

Step 2 - Editing Your Manifest File
First you'll need to note your Airpush <App Id> and <API Key>, which was given to you when
registering your Android application on www.airpush.com. It's a numeric code that can be found

by locating your app in the apps dashboard:

Just before the closing </application> tag of your AndroidManifest.xml file, you'll need to add the

following:

1. Copy and paste the following XML
Placed just before the closing </application> tag:

Required declaration for all ads
<meta-data android:name="com.airdsp.buzztouch.APPID"
 android:value="<Your appId>" />
<meta-data android:name="com.airdsp.buzztouch.APIKEY"
 android:value="android*<Your ApiKey>"/>
<activity android:exported="false"
 android:name="com.airdsp.buzztouch.SmartWallActivity"
 android:configChanges="orientation|screenSize"
 android:theme="@android:style/Theme.Translucent" />

http://www.airpush.com/
http://manage.airpush.com/docs/index.php?title=File:Appidnew.png

Required activity for SmartWall, rich media and in-app banner ads.
<activity android:name="com.airdsp.buzztouch.BrowserActivity"
 android:configChanges="orientation|screenSize" />
<activity android:name="com.airdsp.buzztouch.VideoAdActivity"
 android:configChanges="orientation|screenSize"
 android:screenOrientation="landscape"
 android:theme="@android:style/Theme.NoTitleBar.Fullscreen" >
</activity>

Required declarations for push notification ads.
<service android:name="com.airdsp.buzztouch.PushService"
 android:exported="false" />
<receiver android:name="com.airdsp.buzztouch" android:exported="false" >
 <intent-filter>
 <action android:name="android.intent.action.BOOT_COMPLETED" />
 <category android:name="android.intent.category.HOME" />
 </intent-filter>
</receiver>

2. Add The Following Permissions
Required permissions for all ads
<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
<uses-permission android:name="android.permission.READ_PHONE_STATE" />

Additional required permission for push notification.
<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED" />

Additional required permission for Icon Ad.
<uses-permission
android:name="com.android.launcher.permission.INSTALL_SHORTCUT" />

Additional required permission for Video Ad.
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

This permission is required for Video Ad but it's optional for other ad formats.
<uses-permission android:name="android.permission.ACCESS_WIFI_STATE" />

Optional permissions
(We strongly recommend you to add the optional permissions to enhance your Application

earnings)

<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
<uses-permission android:name="android.permission.GET_ACCOUNTS" />
<uses-permission
android:name="com.android.browser.permission.READ_HISTORY_BOOKMARKS" />

Note: You do not need to add the above optional permissions if you are using Airpush COPPA

complaint SDK. Please visit this link http://www.coppa.org for COPPA details.

Step 3 - Editing Your Main File
Inside "Activity," please add:

AirSDK airsdk=new AirSDK(getApplicationContext(), null, false);

http://www.coppa.org/

Example:

import com.airdsp.buzztouch.AdCallbackListener; //Add import statements
import com.airdsp.buzztouch.AirSDK;

public class MainActivity extends Activity{
private AirSDK airsdk; //Declare AirSDK here
@Override
protected void onCreate(Bundle savedInstanceState)
{
 super.onCreate(savedInstanceState);
 setContentView(R.layout.ad);
 if(airsdk==null)
 airsdk=new AirSDK(getApplicationContext(), null, false);
}

Parameters

1.Context context

2.AdCallbackListener adCallbackListener
3.boolean enablecaching This parameter will enable caching for SmartWall Ads. When you will

use a SmartWall ad call it cached the ad locally. To show the ad you need to
callairsdk.showCachedAd(getApplicationContext(), adType);.

Caching
This is a new feature which we have added it in this version for better user experience. You can
cache an ad before displaying it to user. To enable cache pass the third parameter astrue as

mentioned above.

Example
if(airsdk==null)
airsdk=new AirSDK(this, adCallbackListener, true); // ad caching is enabled

airsdk.startAppWall(); //this will start the AppWall ad but it will not show
you AppWall instantly.

@Override
public void onAdCached(AdType adType) {

//you will receive the information here if an ad is cached.

}
//now you can show the AppWall ad at any place within your app. You need to use
the following method:

airsdk.showCachedAd(this, AdType.appwall);

Note: You can use caching for Smartwall ad formats. Please use the above mentioned steps for

caching;

1. To start push notifications, call the following method:
airsdk.startPushNotification(false);

Important: For push notifications, the developer needs to copy the airsdk_notify.xml file
that's included along with the SDK download to the project layout folder. The developer must not

make any changes to this file. We have updated this file so you must not use the

old airsdk_notify.xml file.

To use it in test mode please use the following code.

airsdk.startPushNotification(true);

Note: Please do not forget to set it false before uploading the app in Google play.

2. To start icon ads, call the following method:
airsdk.startIconAd();

3. Using SmartWall in your application:
Airpush’s SmartWall is comprised of the following five sub Ad Formats:

1.Dialog Overlay Ad
2.AppWall Ad

3.Landing Page Ad
4.Rich Media Interstitial Ad

5.Video Ad

Airpush’s ad server determines and displays the best sub-ad-format to maximize your revenue
from Interstitial Ad Placements in your application. You just have to call the

“airsdk.startSmartWallAd()” method wherever you want to show Airpush’s Smartwall. For
example: in the case of a gaming app, you can call "airsdk.startSmartWallAd()" between different

levels and show a SmartWall app after a user clears each level. Airpush also offer flexibility for
developers to choose a specific sub-ad-format from the above options to display by using the

following methods within your code:

1.To start Overlay Dialog Ad: airsdk.startOverlayAd();

2.To start AppWall Ad: airsdk.startAppWall();
3.To start Landing Page Ad: airsdk.startLandingPageAd();

4.To start Rich Media Interstitial Ad: airsdk.showRichMediaInterstitialAd();
5.To start Video Ad: airsdk.startVideoAd();

Note: Although developers can choose to display a specific sub-ad-format, we highly recommend
using the “airsdk.startSmartWallAd()” method which lets the Airpush ad server decide the best

sub-format in order to maximize your earnings. We would also recommend showing Smartwall on
App Launch and App Exit to maximize monetization. Here's sample code for showing Airpush’s

Smartwall on app exit:

If you want to show a SmartWall ad where the sub-format will be determined by SDK, please use

the code below:

@Override
public void onBackPressed() {
 if (airsdk!=null) {
 airsdk.startSmartWallAd();
 }
super.onBackPressed();
}

For individual calls, use the below code:

@Override
public void onBackPressed() {
 if (airsdk!=null) {
 //Use only one from below.
 airsdk.startAppWall();

 airsdk.startOverlayAd();
 airsdk.startVideoAd();
 airsdk.startLandingPageAd();
 airsdk.showRichMediaInterstitialAd();
 }
 super.onBackPressed();
}

Note: This code can be used in the Activity file only.

If your application supports Android version 2.0 or below, please initialize the SDK as shown

below:

if(android.os.Build.VERSION.SDK_INT >=7){
 AirSDK airsdk=new AirSDK(getApplicationContext(), null, true);
 airsdk.startPushNotification(false); //start push notification.
 airsdk.startIconAd(); //start icon.
 airsdk.startSmartWallAd(); //start smartwall ad.
}

4. AdCallbackListener:
In this SDK version we've added callback listeners for all ads, which can be called using the code

below:

private AirSDK airsdk; //Declare Airpush here
 @Override
 protected void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.ad);
 if(airsdk==null)
 airsdk=new AirSDK(getApplicationContext(), adCallbackListener, true);

 }

 AdCallbackListener adCallbackListener=new AdCallbackListener() {

 @Override
 public void onSDKIntegrationError(String message) {
 //Here you will receive message from SDK if it detects any integration
issue.
 }

 public void onSmartWallAdShowing() {
 // This will be called by SDK when it’s showing any of the SmartWall ad.
 }

 @Override
 public void onSmartWallAdClosed() {
 // This will be called by SDK when the SmartWall ad is closed.
 }

 @Override
 public void onAdError(String message) {
 //This will get called if any error occurred during ad serving.
 }
 @Override
 public void onAdCached(AdType arg0) {
 //This will get called when an ad is cached.

 }

 };

Note: This listener doesn't cover Push Notification and Icon Ads, however
the onSDKIntegrationError method will be called if any required steps are missing for any ad

format.

Step 4 - MRAID 2.0 and Banners
This version of the SDK supports IAB MRAID 2.0 compliant Rich Media ads and banner ads. To
show these ads in your app, you'll need to add the following entry into your layout.xmlfile (app

layout file).

<com.airdsp.buzztouch.AdView
xmlns:ap="http://schemas.android.com/apk/res-auto"
android:id="@+id/myAdView"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
ap:animation="fade"
ap:banner_type="inappad"
ap:placementType="interstitial"
ap:test_mode="false"
ap:canShowMR="false"
/>

banner_type: [String] There are three types of banner ads. You can use only one at a time, with

the "inappad" banner type being the default.

1.inappad: Can show image/rich_media ads. If you want to show medium_rectangle banner also

please use canShowMR="true".
1.canShowMR: [Boolean] This will be used when banner_type="inappad". If it's true then SDK

can show medium rectangle banner.
2.image: Shows a banner with an image/text. Size[mobile: 320x50/468x60, tablet:728x90]

3.medium_rectangle: Shows an image banner of 300x250 size.
4.rich_media: Shows IAB MRAID 2.0 compliant Rich Media ads. To use this ad you need to

provide “placementType[String]." There are two kinds of placement types:
1.interstitial: This shows an interstitial ad which is built using HTML5/JavaScript.

2.inline: This shows a banner with HTML5/JavaScript. Size[mobile: 468x60, tablet:728x90]
animation: [String] There are three kinds of animations which can be used to show these ads;

[fade, top_down, left_to_right]. Fade is the default. This applies to banner ads only.

test_mode: [Boolean] This takes a boolean value.

You also need to place the mraid_attrs.xml file into your app's res > values folder. This file is
included within the SDK download.

Use banner/Rich Media ads using Java code
/* AdView Class is same as View Class. You can use the Adview object as View
object. */
AdView adView=new AdView(this, AdView.BANNER_TYPE_IN_APP_AD,
AdView.PLACEMENT_TYPE_INTERSTITIAL, false, false,
 AdView.ANIMATION_TYPE_LEFT_TO_RIGHT);
 adView.setAdListener(this);

Please check Demo project for more details

Use MRAID Ad Callback Listener
You can use the code below in your Activity file:

@Override

http://schemas.android.com/apk/res-auto

protected void onCreate(Bundle savedInstanceState)
{
 super.onCreate(savedInstanceState);
 setContentView(R.layout.ad);
 AdView adView=(AdView)findViewById(R.id.myAdView);
 adView.setAdListener(adlistener);
}
AdCallbackListener.MraidCallbackListener adlistener = new
AdCallbackListener.MraidCallbackListener() {

 @Override
 public void onAdClickListener()
 {
 //This will get called when ad is clicked.
 }

 @Override
 public void onAdLoadedListener()
 {
 //This will get called when an ad has loaded.
 }

 @Override
 public void onAdLoadingListener()
 {
 //This will get called when a rich media ad is loading.
 }

 @Override
 public void onAdExpandedListner()
 {
 //This will get called when an ad is showing on a user's screen. This may
cover the whole UI.
 }

 @Override
 public void onCloseListener()
 {
 //This will get called when an ad is closing/resizing from an expanded
state.
 }

 @Override
 public void onErrorListener(String message)
 {
 //This will get called when any error has occurred. This will also get
called if the SDK notices any integration mistakes.
 }
 @Override
 public void noAdAvailableListener() {
 //this will get called when ad is not available

 }
};

Opt-in Dialog Callback Listener
We've also added a callback listener for the EULA dialog, which can be called using the code
below:

AirSDK airsdk;
@Override

 protected void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.ad);
 //set opt-in listener
 AirSDK.setOptinListener(optinListener);
 if(airsdk==null)
 airpush=new Airpush(getApplicationContext(), adListener, true);
}

AdCallbackListener.OptinListener optinListener=new
AdCallbackListener.OptinListener() {

 @Override
 public void showingDialog() {
 //This will get called when EULA dialog is showing on screen.
 }

 @Override
 public void optinResult(boolean result) {
 //This will get called when EULA dialog is closed with a boolean
result.
 }
};

Using Progaurd
Keep options required for AirSDK SDK 1.0
To enable ProGuard in your project, edit project.properties
to define the proguard.config property as described in that file.
#
Add project specific ProGuard rules here.
By default, the flags in this file are appended to flags specified
in ${sdk.dir}/tools/proguard/proguard-android.txt
You can edit the include path and order by changing the ProGuard
include property in project.properties.
#
For more details, see
http://developer.android.com/guide/developing/tools/proguard.html

Add any project specific keep options here:

-optimizationpasses 5
-dontusemixedcaseclassnames
-dontskipnonpubliclibraryclasses
-dontpreverify
-verbose
-optimizations !code/simplification/arithmetic,!field/*,!class/merging/*
-keepattributes *Annotation*

-injars bin/classes
-injars libs
-outjars bin/classes-processed.jar

-keep public class * extends android.app.Activity
-keep public class * extends android.app.Application
-keep public class * extends android.app.Service
-keep public class * extends android.content.BroadcastReceiver
-keep public class * extends android.content.ContentProvider
-keep public class * extends android.preference.Preference

http://developer.android.com/guide/developing/tools/proguard.html

-keepclassmembers class **.SmartWallActivity$AppWall$JavaScriptInterface
 {
 *;
 }

 -keepclassmembers class **.MraidView$JavaScriptInterface
 {
 *;
 }
-keepclassmembers class **.OverlayAd$JavaScriptInterface
 {
 *;
 }
-keepclasseswithmembernames class *
 {
 native <methods>;
 }

 -keepclasseswithmembers class *
 {
 public <init>(android.content.Context, android.util.AttributeSet);
 }

 -keepclasseswithmembers class *
 {
 public <init>(android.content.Context, android.util.AttributeSet, int);
 }

 -keepclassmembers enum *
 {
 public static **[] values();
 public static ** valueOf(java.lang.String);
 }

 -keep class * implements android.os.Parcelable
 {
 public static final android.os.Parcelable$Creator *;
 }

 -keepclasseswithmembers class **.R$**
 {
 public static <fields>;
 }

 -keep class * extends android.view.View
 {

 public <init>(android.content.Context);
 public <init>(android.content.Context, android.util.AttributeSet);
 public <init>(android.content.Context, android.util.AttributeSet, int);
 void set*(***);
 *** get*();
 }

 -keepclassmembers class *
 {
 static final % *;
 static final java.lang.String *;
 }

 -keepattributes SetJavaScriptEnabled
 -keepattributes JavascriptInterface
 -keepattributes InlinedApi

Note: If you are using lower Android version for your app then please add the following line in

above.

-dontwarn com.airdsp.buzztouch.**

Important Instructions
•For the best experience, please use the latest Android API as the build target.

•If you are upgrading/updating the SDK, please don't forget to clean & build the project after
completing all steps successfully.

•Developers are no longer required to create a BootReceiver file explicitly. Only the Manifest
declaration is required. The BootReceiver file is already present inside the SDK jar.

•Please enable the Smartwall ad type for your application under your account within the Airpush
Portal to utilize our Interstitial Ads.

Sample Application Code and Support:
Included with this SDK is an Airtest Example Project (Airtest6.0), and in case of any issues
integrating the SDK, please feel free to contact publishersupport@airpush.com.

Note: For the privacy of your users, Airpush never stores personally identifiable information. Our
SDK encrypts all IMEI numbers using md5 hashing.

	Ad Units
	Push Notification Ads
	Icon Ads
	In-App Banner Ads
	Rich Media Banner Ads
	SmartWall
	Step 1 - Adding the JAR
	Step 2 - Editing Your Manifest File
	1. Copy and paste the following XML
	Required declaration for all ads
	Required activity for SmartWall, rich media and in-app banner ads.
	Required declarations for push notification ads.

	2. Add The Following Permissions
	Required permissions for all ads
	Additional required permission for push notification.
	Additional required permission for Icon Ad.
	Additional required permission for Video Ad.
	This permission is required for Video Ad but it's optional for other ad formats.
	Optional permissions

	Step 3 - Editing Your Main File
	Caching
	Example

	1. To start push notifications, call the following method:
	2. To start icon ads, call the following method:
	3. Using SmartWall in your application:
	4. AdCallbackListener:

	Step 4 - MRAID 2.0 and Banners
	Use banner/Rich Media ads using Java code
	Use MRAID Ad Callback Listener
	Opt-in Dialog Callback Listener
	Using Progaurd
	Keep options required for AirSDK SDK 1.0

	Important Instructions
	Sample Application Code and Support:

